

Spektral-selektive Beschichtungen zur Verbesserung der Effizienz von Flugzeugtriebwerken

J. Manara, T. Stark, M. Arduini, H.-P. Ebert, A. Shandy, M. Zipf, J. Hartmann, F. Kuchar, O. Paris, R. Meisels, C. Mitterer, J. O. Peters, T. Gartner, U. Schulz

© Center for Applied Energy Research

Gliederung

Erhöhung des Wirkungsgrades von Flugzeugtriebwerken

• Entwicklung und Simulation spektral-selektiver und wärmereflektierender Beschichtungen

Charakterisierung der Schichtmaterialien bei hohen Temperaturen

- Bestimmung der komplexen Brechungsindizes
- Bestimmung des spektralen Emissions-, Reflexionsund Transmissionsgrades

Zukünftige Entwicklungen und Perspektiven

Flugzeugtriebwerke

Strahltriebwerk

Turboprop © Wikipedia **Open Rotor** © Rolls-Royce

Keramische Wärmedämmschichten (Thermal Barrier Coatings, TBCs)

EB-PVD-Schichten APS-Schichten

20.03.2024 - AKT

© Center for Applied Energy Research

Spektral selektive Beschichtungen: Reflektion der Wärmestrahlung des Heißgases

Spektral selektive Beschichtungen: Multilagenschicht aus alternierenden Einzelschichten

 $m(T) = n(T) + \mathbf{i} \cdot \mathbf{k}(T)$

20.03.2024 - AKT

© Center for Applied Energy Research

Spektral selektive Beschichtungen: Multilagenschicht aus alternierenden Einzelschichten

 $m(T) = n(T) + \mathbf{i} \cdot \mathbf{k}(T)$

20.03.2024 - AKT

Emissionsgrad-Messanlage (EMMA) zur Charakterisierung opaker Proben

EMMA mit Zwischenkammer und FTIR-Spektrometer

Emissionsgrad-Messanlage (EMMA) zur Charakterisierung opaker Proben

EMMA mit Zwischenkammer und FTIR-Spektrometer

Black Body Boundary Conditions (BBC) Anlage zur Charakterisierung semi-transparenter Proben

Black Body Boundary Conditions (BBC) Anlage zur Charakterisierung semi-transparenter Proben

 $i_{\text{mess}}(\lambda, T_{\text{P}}, T_{\text{U}}) = \varepsilon_{\lambda}(T_{P}) \cdot i_{\text{bb}}(\lambda, T_{\text{P}}) + R_{\text{gh}}(T_{P}) \cdot I_{\text{bb}}(\lambda, T_{\text{U}}) + T_{\text{gh}}(T_{P}) \cdot I_{\text{bb}}(\lambda, T_{\text{U}})$

© Center for Applied Energy Research

Bestimmung der komplexen Brechungsindizies aus spektralen Messungen von Emissions- und Transmisionsgrad

$$m_1(T) = n_1(T) + i \cdot k_1(T)$$
 , $m_2(T) = n_2(T) + i \cdot k_2(T)$

$$\rho(T) = \frac{[n_2(T) - n_1(T)]^2 + [k_2(T) - k_1(T)]^2}{[n_2(T) + n_1(T)]^2 + [k_2(T) + k_1(T)]^2} \quad , \qquad \tau(T) = \exp\left[-\frac{4 \cdot \pi \cdot k_2(T)}{\lambda} \cdot d\right]$$

$$T_{gg}(T) = \tau(T) \cdot \frac{[1 - \rho(T)]^2}{1 - \rho^2(T) \cdot \tau^2(T)} \quad , \qquad R_{gg}(T) = \rho(T) \cdot \left[1 + \frac{[1 - \rho(T)]^2 \cdot \tau^2(T)}{1 - \rho^2(T) \cdot \tau^2(T)}\right]$$

Umgebung mit *m*₁

 TiO_2 -Schicht mit m_2

Saphir-Substrat mit *m*₃

Umgebung mit *m*₁

 Al_2O_3 -Schicht mit m_2

Saphir-Substrat mit *m*₃

Al₂O₃-Einzelschicht auf Saphir-Substrat: Reflexionsgrad und Transmissionsgrad

TiO₂-Einzelschicht auf Saphir-Substrat: Reflexionsgrad und Transmissionsgrad

Komplexer Brechungsindex von TiO_2 und Al_2O_3

$$\boldsymbol{m}(\boldsymbol{T}) = \boldsymbol{n}(\boldsymbol{T}) + \mathbf{i} \cdot \boldsymbol{k}(\boldsymbol{T})$$

Spektral selektive Beschichtungen:

Multilagenschicht aus alternierenden Einzelschichten

Spektral selektive Beschichtungen: Multilagenschicht aus alternierenden Einzelschichten

ZrO₂-Einzelschicht auf Saphir-Substrat: Reflexionsgrad und Transmissionsgrad

Komplexer Brechungsindex von ZrO_2 und Al_2O_3

$$m(T) = n(T) + \mathbf{i} \cdot \mathbf{k}(T)$$

Spektral selektive Beschichtungen: Multilagenschicht aus alternierenden Einzelschichten

Präparation und Simulation der Schichtsysteme durch Montanunivesität Leoben

- Beschichtung mittels Magnetron-Sputtern
- Beschichtung auf transpatente Substrate sowie TBCs

Präparation von TBC-Schichten von der DLR und Bereitstellung Substrate von der Lufthansa Technik AG

- Thermal Barrier Coatings (TBCs)
- Environmental Barrier Coatings (EBCs)

Charakterisierung der Schichtsysteme am CAE bei hohen Temperaturen

- Bestimmung der komplexen Brechungsindizes
- Bestimmung des spektralen Emissions-, Reflexions- und Transmissionsgrades

Vielen Dank für die Aufmerksamkeit!

Dr. Jochen Manara

Center for Applied Energy Research e.V. Magdalene-Schoch-Straße 3 97074 Würzburg

T + 49 (0) 931 70564-346 F + 49 (0) 931 70564-600

jochen.manara@cae-zerocarbon.de www.cae-zerocarbon.de Diese Arbeit wurde gefördert vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) im Rahmen des Luftfahrtforschungsprogramms (LuFo) aufgrund eines Beschlusses des Deutschen Bundestages (FKZ 20T1718A-C).

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages