Center for Applied Energy Research

Thermische Eigenschaften poröser Kohlenstoffmaterialien im Temperaturbereich bis 2800 °C

> F. Hemberger, A. Shandy, A. Göbel M. Wiener, H.-P. Ebert

Einsatz von Kohlenstoff basierten Werkstoffen bei hohen Temperaturen

Wärmeleitfähigkeit

Von NASA - http://photojournal.jpl.nasa.gov/catalog/PIA12117, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=15478174

Quelle: Amazon

0.1 W(m·K)⁻¹

Inhalt

- Proben und Messergebnisse
 - Einfluss der Gasatmosphäre
- Zusammenfassung

Flashmethode – Geräte und Prinzip

> Experimentelle Bestimmung der Temperaturleitfähigkeit a

Helium als Schutzgas beiHochtemperaturmessungen→ Geringste Reaktionsneigung

© Netzsch

Flashmethode - Auswertung

- Berechnung der Wärmeleitfähigkeit nach $\lambda = a(T) \cdot c_p(T) \cdot \rho$
- Spezifische Wärmekapazität: Literaturdaten

Specimen investigated	Remark	Density / g cm ⁻³
POCO Graphite		1.78
Carbon Hard Felt Para.	Heat flow parallel to fibre direction	0.12
Carbon Hard Felt Perp.	Heat flow perpendicular to fibre direction	0.13
ZURAM® (charred)	Measured during heating and cooling	0.285
Carbon Xerogel		0.295

POCO Graphit - Temperaturleitfähigkeit

Referenzprobe zur Bestimmung der spezifischen Wärmekapazität

Kohlenstoffhartfilz

Schunk Xycarb Technology, felt grade FP2906

- Dimensionsstabiles Hochtemperatur Isolationsmaterial
- Graphitfasern mit Kohlenstoffbasiertem Binder
- Einsetzbar bis 2800 °C
- Wärmeleitfähigkeit senkrecht und parallel zur Plattenebene stark unterschiedlich

© Schunk Carbon Technology

Kohlenstoffhartfilz - Temperaturleitfähigkeit

ZURAM® (charred)

- Ablatives Isolationsmaterial für Hitzeschilde
- Formkörper aus Hartkohlenstoff getränkt mit Phenolharz
- Vor der Untersuchung wurde das Material unter Argon Atmosphäre bei 1650 °C für 8 Stunden pyrolisiert

zero carbon

Von NASA - http://photojournal.jpl.nasa.gov/catalog/PIA12117, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=15478174

- Helber, B. et al., "Rechar: Assessment Of Reliable Material Characterisation Methods For Charring Ablators", 2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions & Engineering (FAR) 19 - 23 June 2022. Heilbronn, Germany
- 2. Turchi, A. et al., "Thermal Conductivity Evolution of Carbon-Fiber Ablators", Submitted to High Temperatures, https://doi.org/10.2514/1.T6485

ZURAM® (charred) – Bruch des Graphitheizelements in der LFA

- Bruch des Graphit Heizers bei 1650 °C
- Massenzunahme der Probe während der Messung

Work on ZURAM© performed under ESA contract No, 4000131694/20/NL/AR/idb

ZURAM® (charred) – Temperaturleitfähigkeit

Carbon Xerogel

- Herstellung als Resorzinol-Formaldehyd Xerogel
- Pyrolyse unter Argon bei 1000 °C
- Hochtemperaturbehandlung bei 2000 °C

C-Xerogel Platte, ©CAE

Carbon Xerogel - Morphologie

Elektronenmikroskopische Aufnahme

Temperaturleitfähigkeit – Helium Atmosphäre

Berechnete Wärmeleitfähigkeit

Wärmeleitfähigkeit von typischen Inert-Atmosphären

zero carbon Touloukian, Y. S., et al. (1970). <u>Thermal conductivity - Nonmetallic</u> liquids and gases Vol. 3. New York,

CAE AK Thermophysik / 20.-21. März 2024 © Center for Applied Energy Research

Wärmeleitfähigkeit: Einfluss des Spülgases

Wärmeleitfähigkeit: Einfluss des Spülgases bei 400 °C

0,30 0,260 0,25 Differenz eff. Wärmeleitfähigkeit / W(m·K)⁻¹ 0,238 0,222 0,221 0,200 0,199 0,20 0,150 0,15 0,10 0,077 0,05 0,017 0,00 Freies Gas Carbon Hardfelt Parallel Carbon Hardfelt Perpendicular Zuram© Cooling Carbon Xerogel Gemessen Erwartet Literatur

Unterschied bei 400 °C in den Ergebnissen für die Wärmeleitfähigkeit zwischen Helium und Argonatmosphäre

Erwartet = Freies Gas x Porosität der Probe

Zusammenfassung

- Flashmethode zur Bestimmung der Wärmetransporteigenschaften von porösen Kohlenstoff geeignet
- Wärmetransport abhängig von der Mikrostruktur
- Wärmetransport ist abhängig von Vorgeschichte und Atmosphäre

Quelle: Dissertation Geisler

Vielen Dank für die Aufmerksamkeit

Dipl.-Phys. Frank Hemberger Center for Applied Energy Research e.V. Magdalene-Schoch-Straße 3

97074 Würzburg

T + 49 (0) 931 70564-326 F + 49 (0) 931 70564-600

frank.hemberger@cae-zerocarbon.de www.cae-zerocarbon.de

CAE AK Thermophysik / 20.-21. März 2024 © Ce

© Center for Applied Energy Research

Center for Applied Energy Research

