

Thermophysikalische Eigenschaften von keramischen Feststoffelektrolyten

M. Rohde

INSTITUT FÜR ANGEWANDTE MATERIALIEN– ANGEWANDTE WERKSTOFFPHYSIK (IAM-AWP)

Solid electrolyte for Li-ion cells

all solid state cell

- security issues
- very reactive components
- restricted temperature range
- thermal runwaway
- exothermal degradation

- high thermal stability
- operation at high temperatures
- low ionic conductivity at RT
- increasing conductivity vs T

Solid state electrolytes for Li-ion cells:

ion within a solvation shell of electrolyte molecules

J.C. Bachman et. al., Chem. Rev. 2015

Development for Li-ion and beyond Li

Li+ conducting material systems studied:

Li⁺-NASICON: Li_{1.5}Al₀

 $Li_{1.5}AI_{0.5}Ti_{1.5}(PO_4)_3$

 $Li_{1+x}Al_xGe_{1-x}(PO_4)_3$

Melt quenching, sintering (FAST)

Melt quenching, heat treatment (glass route)

Na⁺ conducting material systems studied:

Na+-NASICON:Na_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃Commercial powder (NEI Corporation, USA)Na_{1+x}Zr₂(SiO₄)_x(PO₄)_{1-x}Synthesis by water based sol-gel route (FZJ)¹

¹ S. Naquash, Q. Ma, F. Tietz, O. Guillon; Sol. State Ionics 2017

LATP $(Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3)$ - <u>Field A</u>ssisted <u>Sintering Technology</u> (FAST)

Microstructure

 $T_S = 600 \ ^\circ C$

T_S = 800 °C

T_S = 1000 °C

grain growth

increasing density

E. Bucharsky et. al. Ionics (2016)

6

AK Thermophysik 4./5. April 2023 KIT

LATP ($Li_{1.5}AI_{0.5}Ti_{1.5}(PO_4)_3$): lonic transport vs. thermodynamics

Thermally activated conduction:

$$\sigma = A \cdot \exp\left(\frac{-E_a}{k_B \cdot T}\right)$$

Activation energy: $E_a = 0.25 - 0.33 \text{ eV}$

Specific heat can represented by:

$$C_p(T) = A + B \cdot T - C \cdot T^{-2}$$

(Maier-Kelley)

LATP ($Li_{1.5}AI_{0.5}Ti_{1.5}(PO_4)_3$): Thermal transport properties

LAGP ($Li_{1+x}Al_xGe_{1-x}(PO_4)_3$): Effects of heat treatment

Ionic conductivity of LAGP sintered/annealed with different temperatures and duration.

LAGP: Comparison between powder sintering and glass annealing

Sample annealed from glass

Sample sintered from powder

LAGP ($Li_{1+x}Al_xGe_{1-x}(PO_4)_3$): Specific heat and phase transitions

Increasing lattice distortion: Low Li $(x=1.3) \rightarrow$ Medium Li $(x=1.5) \rightarrow$ High Li (x=1.7)

Y. Cui et. al. Solid State Ionics 289 (2016)

LAGP ($Li_{1+x}Al_xGe_{1-x}(PO_4)_3$): Thermal transport properties

LAGP ($Li_{1+x}Al_xGe_{1-x}(PO_4)_3$): **Ionic vs. thermal conductivity**

Ionic conductivity:

- large variation within $\Delta T \approx 200 \text{ K}$
- thermally activated: $\sigma = \sigma_0 \cdot e^{-E_a/k_BT}$
- increases with doping level

Thermal conductivity:

- small variation with temperature

- decreases with doping level

Na⁺ conducting NASICON systems

NATP and **NaZSiP**:

Thermal transport

NATP and NaZSiP: Specific heat capacity

NATP:

- Cp(T) continuously increasing
- Phase transformation for 700 < T < 800 °C
- Nature of the transformation to be clarified by HT-XRD

NaZSiP:

- Phase transformation in Cp-data for "stoichiometric" Na_{3.0}ZSiP
- Strong anharmonic contribution above 800 °C in Na_{2.7}ZSiP

NATP and NaZSiP: Ionic conductivity

 σ_{ion} increases and activation energy E_a decreases by Na⁺ doping

Summary

Ceramic materials for solid electrolytes:

- Li⁺ / Na⁺ conducting NASICON model systems
- Thermally activated ionic conduction depends on doping and structure
- Increasing ion conduction decreasing thermal conductivity / diffusivity
- Phonon mean free path comparable with hopping distance
- Specific heat $c_p(T)$ data open access to thermodynamic data and modeling

Acknowledgement

Na⁺ conducting systems: This research was funded by the German Research Foundation (DFG) under the Project ID 390874152 (POLiS Cluster of Excellence).

This work contributes to the research performed at CELEST (Center of Electrochemical Energy Storage Ulm-Karlsruhe).

Li⁺ *conducting systems*:

This R&D project is funded by the Helmholtz Association in the Helmholtz Energy Alliance "*Stationary Electrochemical Solid Sta Storages and Converters*" under the grant HA-E-0002.

uster of Excellence

