<u>LINSEIS</u>

Periodic Laer Heating-

Eine Erweiterung der Laser Flash Methode zum Messen der thermischen Eigenschaften dünner Proben

Agenda

General Company Introduction

Linseis Messgeräte GmbH in Germany

- Founded in 1956 by Dr. Maximilian Linseis in Selb (Bavaria/Germany)
- **Production in Selb/Germany,** subsidiaries in the USA, China, India, more than 65 distributor worldwide

Dr. Maximilian Linseis

Dipl. Phys. Claus Linseis and M.Sc. Florian Linseis

Dr. Ing. Vincent Linseis

Business area:

• Laboratory instruments for thermal analysis, thermophysics and dilatometry

Linseis started up with Data Logger

Dilatometer Lab in Germany

Laser Flash Measurement ranges

Laser Flash- Working Principal

Laser Flash- Working Principal

LFA – Time Domain

LINSEIS

LFA – Limitations in the Time Domain

Minimal sample thickness depends on:

- 1. Acquisition rate of the instrument/detector (number of measurement points)
- 2. Duration of the laser pulse
 - (overlay of laser pulse and resulting sample temperature rise)

LFA – Limitations in the Time Domain

Minimal sample thickness depends on:

- 1. Acquisition rate of the instrument/detector (number of measurement points)
- 2. Duration of the laser pulse
 - (overlay of laser pulse and resulting sample temperature rise)
- > Need for a different approach!
- Periodic Laser Heating

Periodic Laser Heating (PLH) – Working Principal

Explanation:

- Periodic modulated laser beam excites (heats) the front side of the sample
- Energy is absorbed by the sample
- Thermal wave propagates through the sample to its rear side
- Thermal energy is emitted via radiation with a wavelength in the IR-range
- IR-Detector detects the signal which is amplified by a Lock-In-Amplifier
- Amplitude and phase shift is monitored
- Frequency of the laser is tuned and Phase and Amplitude is saved

→ Measurement in the frequency domain

Periodic Laser Heating (PLH) – Working Principal

Periodic Laser Heating (PLH) – Working Principal

From classic LFA to PLH

LFA & PLH Comparison

LFA	PLH
 Sample is subjected by thermal disturbance (Pulse) Disturbance is observed as function of time (Time Domain) Typical measurement range: mm 	 Sample is subjected by a periodic thermal disturbance Disturbance is observed as a function of frequency (Frequency Domain) Typical measurement range: µm
+ Short measurement time + Broad λ -range + Broad temperature range - Complicated theory	 + Thinner samples + "Model free" evaluation - Little bit longer measurements - Limited temperature range

33

Measurement Examples

PTFE foil (100 µm)

PE foil (25 μm)

Samples have to be sprayed or coated with carbon

Measurements – Polymers Polytetrafluoroethylene (PTFE) 50 µm

Measurements – Polymers: Polyethylene (PE) 25 µm

Measurements – Ceramics: Sapphire 500 µm

Measurements – Metals: Copper 500 µm

Laser Flash Measurement ranges

PLH – Extension for μm sample thicknesses

PLH – Extension for μm sample thicknesses

LINSEIS

Linseis Product Lineup

Laser Flash Analyzer	LFA + PLH (combined Version)	Periodic Laser Heating
 PLH add-on for Laser/Xenon-Flash instruments 	 Two measurement techniques combined in one instrument Same outer dimensions 2 in 1 measurement system 	 New LFA can be upgraded with PLH option
$\sum_{i=1}^{5} \frac{1}{2} + \frac{1}{2}$	 Worldwide unique combined measurement system <i>Combination Patent pending</i> Broadest measurement range 	$a = 0.1134 \frac{\text{mm}^2}{\text{fitquality: 0.9996}}$ $a = 105.6 \mu\text{m}$ fitquality: 0.9996 a = -4 a = -4

Specifications and BBenefits

Specification PLH

Periodic | Laser- PLH Heating |

Most advanced tool

Free standing films, membranes and more

Automatic sample throughput

10 – 500 µm / Up to +300°C

Up to 5 W cw power

Model free evaluation

Specifications

Specification LFA & PLH

Combined Solution LFA & PLH

Unique combination

Solid, liquids, pastes, powders, PCM, Free standing films, membranes

Automatic sample throughput

10 – 6000 μm / Up to +2800°C

Up to 25J/puls / 5 W cw power

Advanced Evaluation

Thermal Penetration Depth (TPD) µ:

/INSEIS

Keep in mind: The higher the modulation frequency gets, the less the laser radiation penetrates the sample

Different theoretical sample thermal diffusivities (sample thicknesses are the same):

High frequency *f*:

Low frequency f:

Frequency dependence of phase shift and amplitude:

$$\Delta \phi = -\sqrt{\frac{\omega}{2\alpha}} d - \frac{\pi}{4}$$

$$Amp = A_L \frac{1}{\sqrt{\omega}e} \exp\left(-\frac{d}{\mu}\right); \ \mu = \sqrt{\frac{2\alpha}{\omega}}$$

Frequency dependence of phase shift and amplitude :

$$\Delta \phi = -\sqrt{\frac{\omega}{2\alpha}} d - \frac{\pi}{4} = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + c_1$$

$$\Rightarrow Phase vs. \sqrt{frequency}$$

$$Amp = A_L \frac{1}{\sqrt{\omega}e} \exp\left(-\frac{d}{\mu}\right)$$

Frequency dependence of phase shift and amplitude :

$$\begin{split} \Delta \phi &= -\sqrt{\frac{\omega}{2\alpha}} d - \frac{\pi}{4} = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + c_1 \\ \Rightarrow Phase vs. \sqrt{frequency} \\ Amp &= A_L \frac{1}{\sqrt{\omega}e} \exp\left(-\frac{d}{\mu}\right); \ \mu &= \sqrt{\frac{2\alpha}{\omega}} \\ \vdots \\ \log(Amp * \sqrt{\omega}) &= -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + \log(A_L) - \log(e) \\ \log(Amp * \sqrt{\omega}) &= -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + c_2 \\ \Rightarrow converted amplitude vs. \sqrt{frequency} \end{split}$$

Frequency dependence of phase shift and amplitude :

$$\Delta \phi = -\sqrt{\frac{\omega}{2\alpha}} d - \frac{\pi}{4} = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + c_{1}$$

$$\Rightarrow Phase vs. \sqrt{frequency}$$

$$Amp = A_{L} \frac{1}{\sqrt{\omega}e} \exp\left(-\frac{d}{\mu}\right); \ \mu = \sqrt{\frac{2\alpha}{\omega}}$$

$$\log(Amp * \sqrt{\omega}) = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + \log(A_{L}) - \log(e)$$

$$\log(Amp * \sqrt{\omega}) = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + c_{2}$$

$$\Rightarrow converted amplitude vs. \sqrt{frequency}$$

Slopes are the same and contain the thermal diffusivity:

$$\Delta \phi = -\sqrt{\frac{\omega}{2\alpha}} d - \frac{\pi}{4} = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + c_1$$

$$\Rightarrow Phase vs. \sqrt{frequency}$$

$$Amp = A_L \frac{1}{\sqrt{\omega}e} \exp\left(-\frac{d}{\mu}\right); \ \mu = \sqrt{\frac{2\alpha}{\omega}}$$

$$\log(Amp * \sqrt{\omega}) = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + \log(A_L) - \log(e)$$

$$\log(Amp * \sqrt{\omega}) = -\frac{d}{\sqrt{2\alpha}} \sqrt{\omega} + c_2$$

$$\Rightarrow converted amplitude vs. \sqrt{frequency}$$

Linseis Messgeräte GmbH
 Vielitzer Str. 43
 95100 Selb
 info@linseis.de
 www.linseis.com

f 🞯 in 🕨

Thank you for your attention!

