

Ringvergleich: Wärmeleitfähigkeit von Aerogelen

H.-P. Ebert¹, S. Braxmeier¹, F. Hemberger¹, F. Lied², G. Reichenauer¹

Center for Applied Energy Research
 BASF Polyurethanes GmbH

Organization of the intercomparison

Ebert H.-P., Braxmeier S., Reichenauer G., Hemberger F., Lied F., Weinrich D., Fricke M. Intercomparison of Thermal Conductivity Measurements on a Nanoporous Organic Aerogel International Journal of Thermophysics 42:21 DOI 10.1007/s10765-020-02775-9 (2021)

Teilnehmer

- Forschungsinstitut für Wärmeschutz e.V.
- CAE

- Österreichisches Gießerei-Institut
- TAURUS® Instruments AG (ausgeschieden)
- Institut für Kunststoffverarbeitung an der RWTH Aachen
- Austrian Research Centers
- C3 Prozess- und Analysentechnik GmbH (ausgeschieden)
- Materialprüfungsamt NRW
- Netzsch-Gerätebau GmbH
- Deutsches Zentrum f
 ür Luft- und Raumfahrt e.V. (DLR), Institut f
 ür Werkstoff-Forschung
- Technische Universität Hamburg-Harburg, Institut für Thermische Verfahrenstechnik
- BASF Polyurethanes GmbH AG1
- BASF Construction Solutions GmbH
- BASF Polyurethanes GmbH AG2
- Fraunhofer-Institut f
 ür Fertigungstechnik und Angewandte Materialforschung IFAM

zero carhon

Unterschiedliche Methoden und Messaufbauten

Measurement method	Type of instrument	Specimen geometry
guarded hot-plate	self-built high temperature version	500 mm x 500 mm x 15 mm
guarded hot-plate	self-built	500 mm x 500 mm x 15 mm
guarded hot-plate	self-built high temperature version	diameter 280 mm, thickness 15 mm
guarded hot plate	self-built	diameter 300 mm, thickness 15 mm
heat flow meter	Netzsch HFM 436 Lambda®	300 mm x 300 mm, thickness 15 mm
transient hot-wire	self-built	120 mm x 40 mm x 15 mm
transient hot-bridge	Linseis THB-1	70 mm x 40 mm x 15 mm
transient plane-source	Hot Disk® TPS 2500 S	37 mm x 37 mm x 15 mm
guarded hot-plate	n.a.	30 mm x 30 mm x 15 mm
heat flow-meter	Netzsch HFM 446 Medium Lambda®	300 mm x 300 mm x 15 mm
guarded hot-plate	self-built	300 mm x 300 mm x 15 mm
heat flow-meter	HFM 446 M Lambda®	300 mm x 300 mm x 15 mm
guarded hot-plate	Netzsch GHP 456 Titan®	300 mm x 300 mm x 15 mm
transient plane-source	Hot Disk® TPS 2500 S	diameter 70 mm, thickness 15 mm
heat flow-meter	Netzsch HFM 436 Lambda®	200 mm x 200 mm, thickness 15 mm
transient plane-source	Hot Disk® TPS 2500 S	n.a.
heat flow-meter	Taurus TCA 300 DTX	300 mm x 300 mm x 15 mm
guarded hot-plate	Lambda Messtechnik EP500e	250 mm x 250 mm x 15 mm
heat flow-meter	TA Instruments - FOX 304	300 mm x 300 mm x 15 mm
transient plane-source	Hot Disk® TPS 2500 S	40 mm x 40 mm x 15 mm

Vorversuche - Ultraschallmessungen

$$\lambda_s = \lambda_b \cdot \frac{\rho}{\rho_0} \cdot \frac{\nu}{\nu_0}$$

0.25

0.20

0.15

474.4 479.8 **Sound** velocity v 490.5 495.9 501.3 ms⁻¹ 506.7 512.0

Beitrag des Gases zur Gesamtwärmeleitfähigkeit

Vorversuche

	H m ü NHN
82166 Gräfelfing	550
97074 Würzburg	177
A-8700 Leoben	541
52074 Aachen	175
A-1210 Wien	151
D-85540 Haar / bei München	542
44287 Dortmund	86
95100 Selb/Bayern	562
51147 Köln	53
21073 Hamburg	6
49448 Lemfoerde	46
83308 Trostberg	493
49448 Lemfoerde	46
01277 Dresden	112

Ringvergleich Aerogel 04.04.2023

© Center for Applied Energy Research

© Center for Applied Energy Research

Gelieferte Messwerte

© Center for Applied Energy Research

© Center for Applied Energy Research

Einfluss der Gasdruck-Korrektur (GHP Ergebnisse)

Prozentuale Abweichung der Messwerte vom Mittelwert

Vergleich stationärer und dynamischer Methoden

REM Aufnahmen

Ringvergleich Aerogel 04.04.2023

© Center for Applied Energy Research

Ergebnis

- Die effektive Gesamtwärmeleitfähigkeit eines nanoporösen Materials wurde bei 20 °C, 40 °C und 60 °C bestimmt.
- Es wurden stationäre und instationäre Messmethoden verwendet.
- Der Mittelwert basiert hauptsächlich auf den Ergebnissen der stationären Guarded-Hot-Plateund Heat-Flow-Meter-Aufbauten.
- Die Korrektur des Einflusses des atmosphärischen Drucks verringert die Unsicherheit der berechneten Mittelwerte erheblich.
- Die Ergebnisse der instationären Methoden müssen kritisch diskutiert werden.
- Systematische Unsicherheiten bezüglich der thermischen Übergangswiderstände bei den stationären Messverfahren können einen geringen Einfluss auf die Messergebnisse haben.
- Die Bestimmung niedriger Wärmeleitfähigkeitswerte ist eine Herausforderung, insbesondere bei kleinen Probengeometrien oder Messgeräten, die üblicherweise für kleine Probengrößen eingesetzt werden.

Ringvergleich Aerogel 04.04.2023

© Center for Applied Energy Research