

Thermophysikalische Charakterisierung von Li-Ionen Zellen

M. Brütting, A. Göbel, F. Hemberger, S. Vidi, H.-P. Ebert

Arbeitskreis Thermophysik 05.04.2023

© Center for Applied Energy Research

Motivation

- Li-Ionen Zellen sind extrem gefragt für unterschiedliche Anwendungen
- Thermisches Management spielt eine wichtige Rolle für die Lebensdauer der Zellen
- Simulation des thermischen Verhaltens spielt eine sehr große Rolle für die Auslegung des Batteriesystems.
- Thermophysikalische Eigenschaften müssen genau bekannt sein

Waldmann, Thomas, et al. "Temperature dependent ageing mechanisms in Lithium-ion batteries—A Post-Mortem study." *Journal of power sources* 262 (2014): 129-135.

Methoden zur thermophysikalischen Charakterisierung von Li-Ionen Zellen

- Bottom Up:
 - Zerlegen der Zellen in Einzelteile
 - Probenpräparation unter Schutzgas
 in Argon nötig
 - Vermessung der einzelnen Schichten

- Top Down:
 - Vermessung einer geschlossenen Zelle
 - Bestimmung effektiver thermophysikalische Größen für die gesamte Zelle
 - Zellmodellbasierte Auswertung der Messdaten

Bottom UP: Mehtoden zur Vermessung der Zellbestandteile

a manage

Berechnung effektive Wärmeleitfähigkeit und Wärmekapazität der Gesamtzelle

Zellbestandteile:

- Zellhülle: Fe
- Anode (Aktivmaterial + Cu-Stromableiterfolie):
- Kathode (Aktivmaterial + Al-Stromableiterfolie):
- Separator

Messmethoden:

Thermoscan λ_{\parallel}

• LFA $a_{\perp,\parallel}$

• DSC c_p

Methoden: Laser Flash + DSC

Thermoscan Methode

$$\Delta T(x) = \Delta T_0 \frac{\cosh\left(\frac{L-x}{l_0}\right)}{\cosh\left(\frac{L}{l_0}\right)}$$

 $l_0 = \sqrt{\frac{\lambda D}{8 \sigma \varepsilon T^3}}$

$$\lambda = \frac{l_0^2 \ 8 \ \sigma \ \varepsilon \ T^3}{D}$$

Thermophysikalische Eigenschaften der Bestandteile

8

Berechnung der effektiven Wärmeleitfähigkeit

Kombination von thermischen Widerständen

 $R_{th,n} = \frac{1}{2\pi \lambda_n} \ln\left(\frac{r_n}{r_{n+1}}\right) \qquad \lambda_{\text{eff}} = \frac{1}{2\pi \sum_{n=1}^{101} R_{th,n}} \ln\left(\frac{r_1}{r_{101}}\right)$

Zylinderzelle: Hülle + 25 Windungen à 4 Schichten: Separator + Anode + Separator + Kathode = 101 Einzelschichten

Radial: Reihenschaltung

Einzelschicht

Effektivwert Schichtpaket

Einzelschicht

Axial: Parallelschaltung

$$R_{th,n} = \frac{l}{\lambda_n \left(r_n^2 - r_{n+1}^2\right) \pi}$$

Effektivwert Schichtpaket

 $\lambda_{\rm eff} = \frac{l \cdot \sum_{n=1}^{101} \frac{1}{R_{th,n}}}{(r_1^2 - r_{101}^2) \pi}$

Charakterisierung der Separatorschicht

- Poröse Polymerschicht
 - Material: PP oder PP/PE/PP (+ Beschichtung)
 - typische Porosität: 40 %,
 - Porengröße von ca. 30 nm bis 100 nm
 - Dicke 14 μm 25 μm
- LFA:
 - Messung ohne Beschichtung nicht möglich
 - Beschichtung mit Graphit nicht möglich
 - Messung im Dreischichtsystem möglich:
 - Probe zwischen Edelstahlplättchen
 - Innenseite der Plättchen mit Gold beschichtet

Abschätzung der Wärmeleitfähigkeit der Separatorschicht

Landauer Relation Basiert auf Effective Medium Percolation Theory

Arbeitskreis Thermophysik 05.04.2023

11

zero carbon

Unsicherheitsbetrachtung Wärmeleitfähigkeit

Radial: Reihenschaltung von thermischen Widerständen

$$R_{th,n} = \frac{1}{2\pi \lambda_n} \ln\left(\frac{r_n}{r_{n+1}}\right) \qquad \lambda_{\text{eff}} = \frac{1}{2\pi \sum_{n=1}^{101} R_{th,n}} \ln\left(\frac{r_1}{r_{101}}\right)$$

- Mittelwert 0,94 W $m^{-1} K^{-1}$
- Rel. Unsicherheit (k=2) $\pm 24 \%$

Separatorschicht:

- Bisher nur Literaturwerte verwendet mit sehr großer Unsicherheit
- Trotz sehr geringer Schichtdicke (14 µm) wesentlicher Einfluss auf die Unsicherheit des Gesamtwiderstandes

Arbeitskreis Thermophysik 05.04.2023

Unsicherheitsbetrachtung Wärmeleitfähigeit

Axial: Parallelschaltung von thermischen Widerständen

$$R_{th,n} = \frac{l}{\lambda_n \left(r_n^2 - r_{n+1}^2\right) \pi} \qquad \lambda_{\text{eff}} = \frac{l \cdot \sum_{n=1}^{101} \frac{1}{R_{th,n}}}{\left(r_1^2 - r_{101}^2\right) \pi}$$

- Mittelwert 19,1 W m⁻¹ K⁻¹
- Rel. Unsicherheit (k=2) $\pm 6,4\%$
- Unsicherheit der Separatorschicht spielt untergeordnete Rolle

zero carbon

Bottom-Up: Fazit

- Große Unsicherheit für die effektive Wärmeleitfähigkeit in radialer Richtung
- Separatorschicht muss genau charakterisiert werden
- Durch Zerlegung wird die Probe verändert
 - Lösungsmittel dampft ab
 - Thermische Kontaktwiderstände können nicht erfasst werden
- Für den Wärmetransport in axialer Richtung spielen Separatorschichten und Kontaktwiderstände eine untergeordnete Rolle

Top Down: Methoden zur Vermessung der Gesamtzelle

Geschlossene Zelle

- Zylinder
- Prisma
- Pouch

Messmethoden

- MacroDSC
- Guarded Hot Plate
- (Elektro-thermische Impedanzspektroskopie)

Effektive thermische Zellparameter:

- Effektive spezifische Wärmekapazität
- Effektive Wärmeleitfähigkeit
- (RC-Modellparameter)

Effektive Wärmekapazität: MacroDSC

Spezifische Wärmekapazität c_p : 820 $\frac{J}{\text{kg K}}$ bis 860 $\frac{J}{\text{kg K}}$

Effektive Wärmeleitfähigkeit: GHP

Top-Down: Fazit

- Messung effektiver thermopyhikalischer Größen für die Gesamtzelle ist möglich
- Für die Modellierung der Gesamtzelle sind die effektiven Größen der Gesamtzelle sinnvoller
 - Beinhalten alle eingesetzten Komponenten
 - Thermische Kontaktwiderstände werden berücksichtigt

Ausblick Thermische Impedanzspektroskopie (TIS)

- Periodische thermische Anregung der Zelle durch sinusförmige Heizleistung mit unterschiedlichen Frequenzen
- Messung der zeitlichen Temperaturantwort
- Verwendung eines thermischen Ersatzschaltbildes
- Fit der Messdaten zur Ermittlung der thermischen Größen

Ausblick: Direkter Verlgeich von Bottom-Up und Top-Down

Welche Methode eignet sich besser zur Charakterisierung von Li-Ionen Zellen?

Es kommt darauf an:

- Charakterisierung Einzelkomponenten sinnvoll, wenn Wärmetransportvorgänge innerhalb der Zelle detailliert untersucht werden
- Charakterisierung von Gesamtzelle sinnvoll, wenn effektive thermische Größen der Zellen benötigt werden zur Berechnung von Zellmodulen.

Vergleich der beiden Ansätze geplant zur genaueren Quantifizierung der Unsicherheiten und Abweichungen.

Vielen Dank für die Aufmerksamkeit!

Michael Brütting

Center for Applied Energy Research e.V. Magdalene-Schoch-Straße 3 97074 Würzburg

T + 49 (0) 931 70564-323 F + 49 (0) 931 70564-600

michael.bruetting@cae-zerocarbon.de <u>www.cae-zerocarbon.de</u>

JOPP

