Experimentierplattform für dynamische Materialuntersuchung

- J. Manara, M. Zipf, T. Stark, M. Arduini, H.-P. Ebert (ZAE)
- F. Schmidt, U. Krüger (TechnoTeam)
- E. Schreiber (KE Technologie)
- K. Knopp, M. Zänglein, J. Hartmann (FHWS)

ZAE: Bayerisches Zentrum für angewandte Energieforschung e.V. Bereich Energieeffizienz Techno Team Bildverarbeitung GmbH, Ilmenau KE Technologie Stuttgart Hochschule für angewandte Wissenschaften Würzburg – Schweinfurt

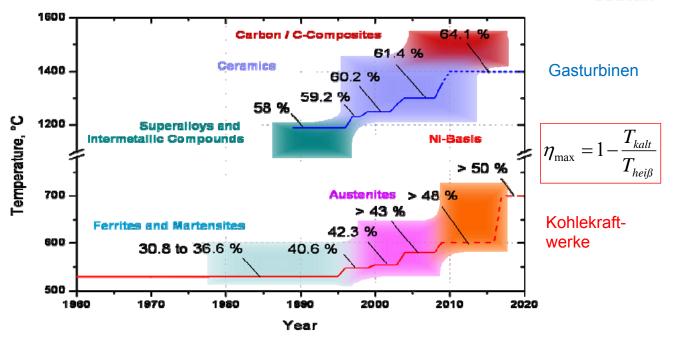
AkT 3./4.4.2017 Jürgen Hartmann

Experimentierplattform für dynamische Materialuntersuchung

Gliederung

Motivation

- Erhöhung der Effizienz von Kraftwerken
- EU-Projekt STARGATE
- BMWi Projekt OptiTBCs
- Eigenschaften von additiv gefertigten Bauteilen


Experimenteller Aufbau und erste Vorversuche

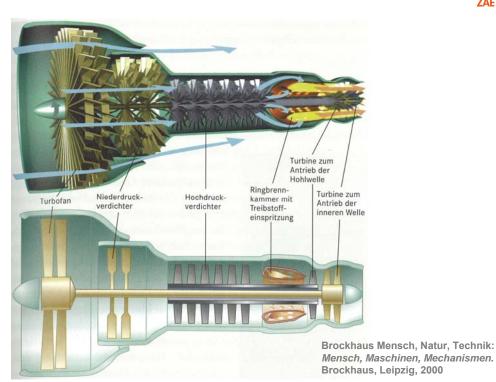
- Infrarot-optische Eigenschaften von Thermal barrier coatings
- Strahlungsthermometrie bei langen Wellenlängen
- Wärmeausbreitung in Schichtsystemen
- dynamische thermische Anregung basierend auf Laser Flash Methode

Erhöhung der Effizienz von Kraftwerke

ZAE BAYERN

W. Drenckhahn, B. Rukes, K. Riedle, Konventionelle Kraftwerkstechnologien - Eine Frage der Effizienz, BWK 61 (7/8), 72 (2009) ALSTOM Power Generation AG, "Life Needs Power", HANNOVER MESSE 2007

R.B., Heimann, Plasma Spray Coating: Principles and Applications, Willey-VCH, Weinheim, 2nd edition (2008)

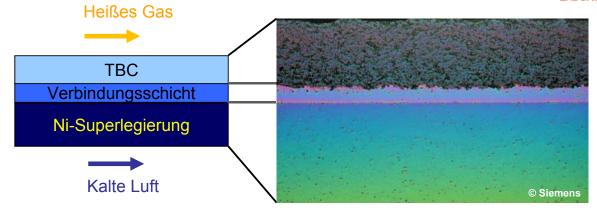

© ZAE Bayern, FHWS

AkT 3./4.4.2017 Jürgen Hartmann

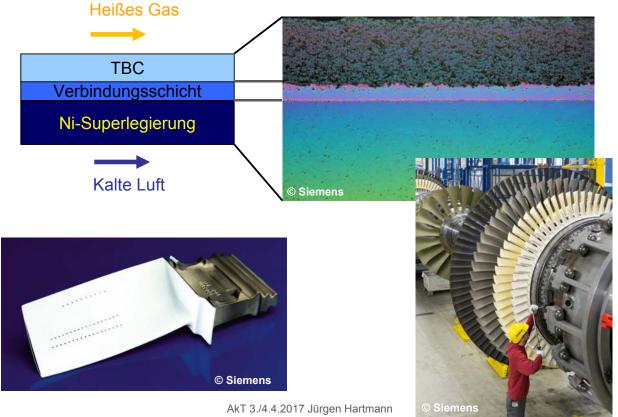
3

Flugzeug-Turbine

Stationäre Gasturbine



AkT 3./4.4.2017 Jürgen Hartmann


Wärmeschutzschichten (Thermal Barrier Coatings TBC)

Wärmeschutzschichten (Thermal Barrier Coatings TBC)

Vorarbeiten: EU Projekt Stargate

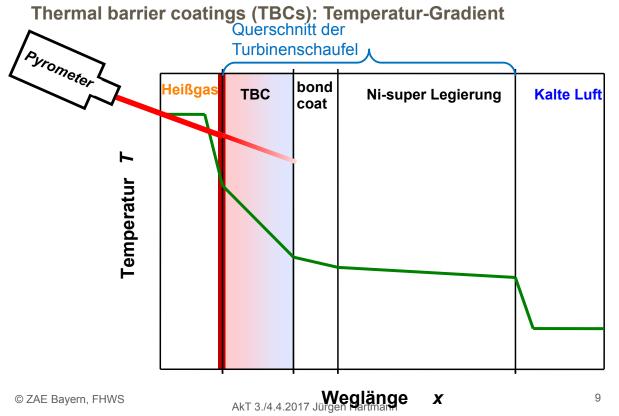
<u>Sensors towards advanced Monitoring and Control of Gas Turbine Engines</u>

Ziel:

Erhöhung der Betriebstemperatur zur Erhöhung der Effizienz ohne Beeinflussung der Betriebssicherheit

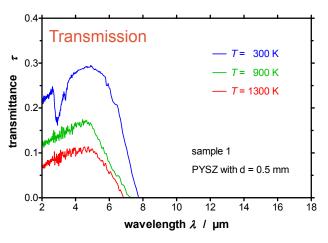
Methode:

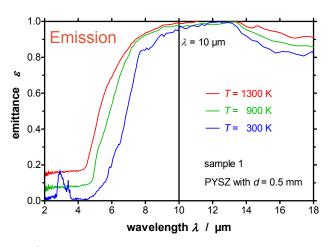
Entwicklung innovativer Sensoren zur Erhöhung der Energieeffizienz von Gasturbinen


Temperaturmessung:

Berrührungslose Temperaturmessung zur Optimierung der Betriebsparameter

Semi-Transparente TBCs

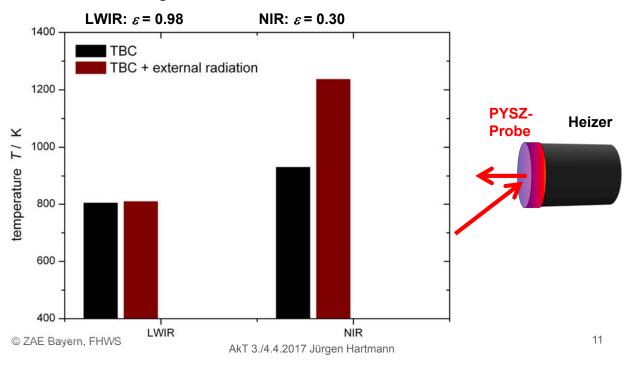



Transmission und Emissionsgrad von PYSZ

Freistehende TBC aus partiell Yttrium stabilisierten Zirconium (PYSZ)

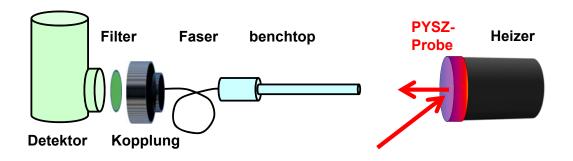
semi-transparent im NIR und MIR bis 8 µm

Christiansen Wellenlänge bei 13µm

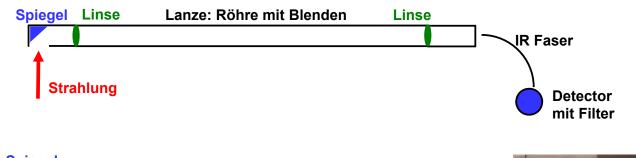

Wellenlänge für berührungslose Temperaturmessung ~ 10 μm

Berührungslose Temperaturmessung

Einfluss der Reflexion bei heißer Umgebung: Vergleich LWIR- und NIR-Pyrometer


Emissionsgrad der TBC:

Berührungslose Temperaturmessung


LWIR-Pyrometer Laboraufbau

LWIR Strahlungsthermometer

LWIR-Pyrometer für Gasturbinenmessungen

Lanze: Röhre mit Blenden

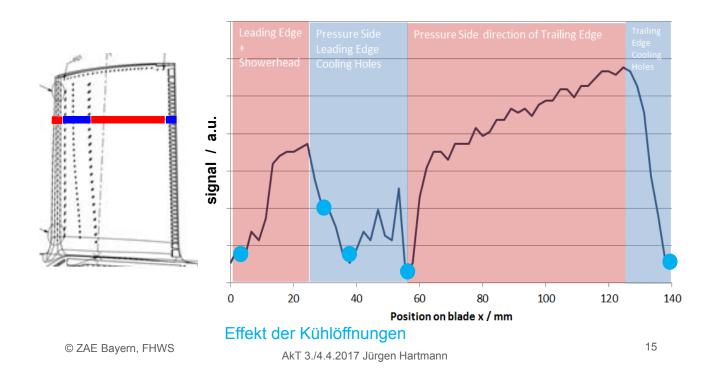
N₂ Spülung

© ZAE Bayern, FHWS

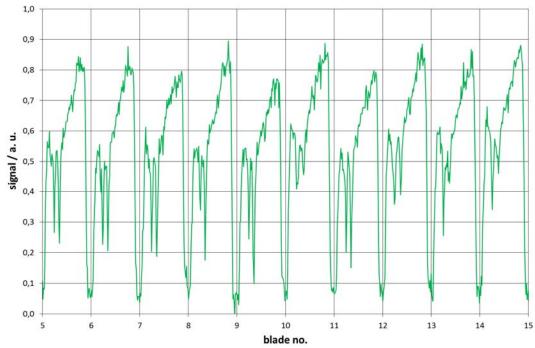
AkT 3./4.4.2017 Jürgen Hartmann

13

Test des LWIR-Pyrometer Aufbaus


Siemens Berlin Teststand (BTF)

Messung an der Siemens BTF


Gemessenes und analysiertes Temperatursignal in willkürlichen Einheiten

Messungen an der Siemens BTF

Gemessenes und analysiertes Temperatursignal in willkürlichen Einheiten

© ZAE Bayern, FHWS

AkT 3./4.4.2017 Jürgen Hartmann

Vorabeiten: BMWi Projekt OptiTBCs

FH'W-S

Wärmedämmschichten mit optimierten Haftungseigenschaften für energieeffiziente Kraftwerksturbinen

Ziel

- Erhöhung der Energieeffizienz in Turbinen und Kraftwerken
- · durch Erhöhung der Prozesstemperaturen

Probleme

- Delamination der Wärmedämmschicht
- Fehlende zerstörungsfreie Analysemethode

Bedarf

- Bildgebende Verfahren zur Untersuchung der Haftung von Schutzschichten bei hohen Temperaturen:
- qualitative Erkennung von Schwachstellen
- Quantisierung der Haftung bzw. Lösung von Schichten

On
Gefördert durch:

Bundesministerium
für Wirtschaft

S
S

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

AkT 3./4.4.2017 Jürgen Hartmann

Wärmetransport durch eine Wärmedämmschicht

© ZAE Ba Materialeigenschaften

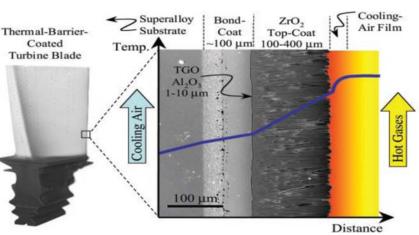
Thermal barrier coatings (TBCs): Temperatur-Gradient
Querschnitt der
Turbinenschaufel

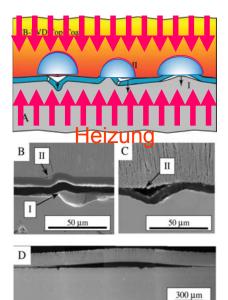
Heißgas TBC bond coat Ni-super Legierung Kalte Luft

Opto-thermische

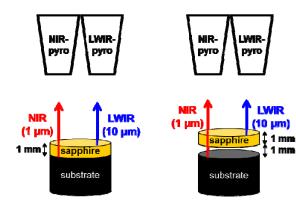
Thermischer Kontaktwiderstand/Haftung

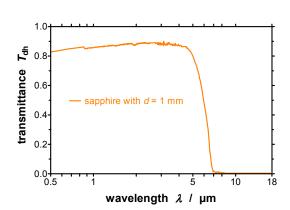
Weglänge


3./4.4.2017 Jürgen Hartman


Wärmedämmschichten (Thermal Barrier Coating:TBC)

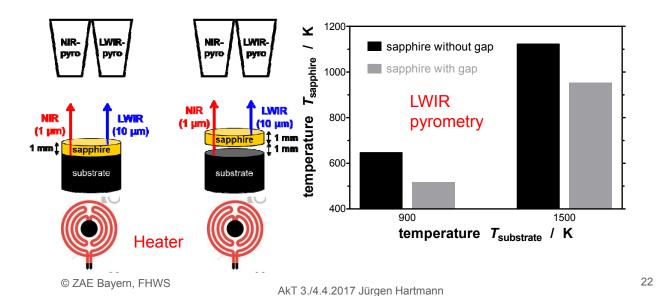
Nitin P. Padture, Maurice Gell und Eric H. Jordan: Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science **296** 280-284 (2002)




AkT 3./4.4.2017 Jürgen Hartmann

Vorabeiten BMWi Projekt OptiTBCs

Methode

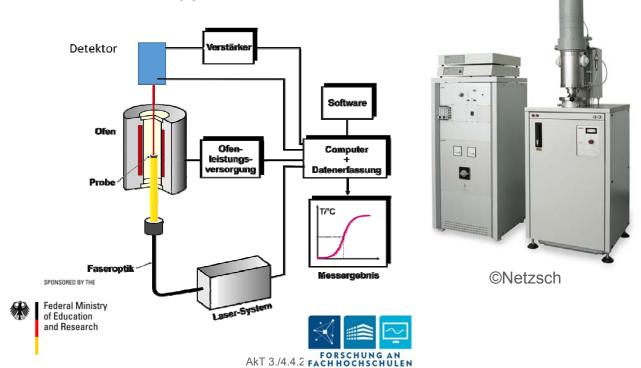


Vorabeiten BMWi Projekt OptiTBCs

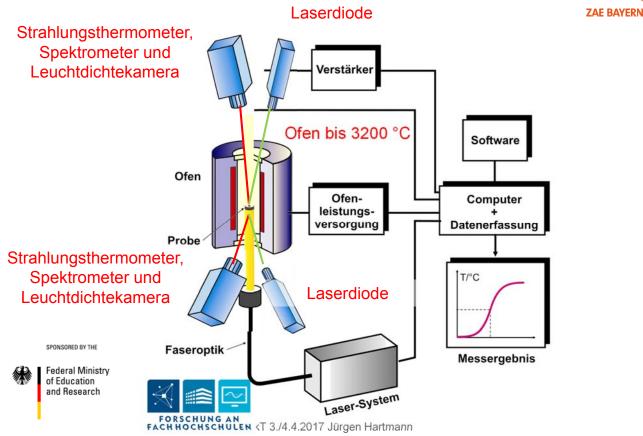
Erste Messung

Experimentierplattform für dynamische Materialuntersuchung

- Gefördert vom BMBF FKZ: 03FH007IN6
- Partner: FHWS, KE Technologie, ZAE, TechnoTeam
- Ziel: Optimierung von Hochtemperaturprozessen und Herstellungsverfahren für Industrie 4.0 fähige Prozesse durch in-situ Messungen von optischen und thermopyhsikalischen Materialeigenschaften
- Methode: Messung der Wärmeausbreitung zur Bestimmung der opto-thermischen Schichtdaten, des Kontaktwiderstands und der Haftung
 - mit variabler dynamischer Anregung (gepulst, moduliert, stufig) und bildgebender Detektion an Vorder- und Rückseite



Ausgangspunkt Laser Flash Mehtode



Laser-Flasch-Apparatur LFA 427

Experimentierplattform für dynamische Materialuntersuchung

Konsortium OptiTBCs und ExdyMa FH_'W-S

ZAE BAYERN

Kompetenzen:

- FHWS: Hochtemperturmesstechnik, bildgebende Temperaturmessung, thermische Messtechnik
- **ZAE**: Thermophysikalischen Messmethoden, IR Messtechnik
- TechnoTeam (KMU): Strahldichtekameras, 2D Temperaturmesstechnik im sichtbaren und nahen IR
- Rauschert-Pressing GmbH (KMU): Beschichtungstechniken, Probenherstellung
- ExdyMA: KE Technologie GmbH: Strahlungsthermometer, Thermophysikalische Messmethoden

• ExdyMa: Netzsch Gerätebau GmbH: Messgeräte für Thermophysikalische

Materialuntersuchung

Zeitplan: OptiTBCs 1.11.2016 bis 31.10.2019

ExdyMa 15.7.2016 bis 14.7.2017

× 120 10 510 14.1.20 17

AkT 3./4.4.2017 Jürgen H FACHHOCHSCHULEN

Danke!

